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A mathematical model of decomposition of gas hydrates that coexist with a gas in natural strata is
proposed; the model takes into account the mobility of the liquid phase. Conditions at the unknown
boundary of dissociation are derived. In the self-similar approximation, the solution is represented in
the form of probability integrals. The obtained system of transcendental equations at the moving
boundary has been investigated numerically in a wide range of parameters. It is shown that different
regimes of dissociation in collectors with a positive initial temperature exist; these regimes corre-
spond to the decomposition of a hydrate into gas and water and gas and ice and have both a sharp
phase-transition front and are accompanied by the formation of an extended region of dissociation.
On the plane of the main parameters of the process, the critical diagram is constructed and the ex-
istence domains of the solution of each form are singled out.

Interest in gas hydrates, as in potential sources of natural gas, has grown in recent years. The supply
of hydrates found in different regions of the world turned out to be so considerable that the development of
scientifically intensive technologies of extraction of a gas from the natural deposits of gas hydrates is one of
the main problems in this stage. Permeable strata that can contain natural gas in the free state, water, petro-
leum, etc. in addition to gas hydrates are one of the most widespread kinds of deposits of gas hydrates.

The process of extraction of a gas from a hydrate-containing stratum assumes the decomposition of
the hydrate in the stratum and is accompanied by the motion of the gas, water, petroleum, or other mobile
components contained in the collector and by phase transitions as well. In the general case we can have dif-
ferent regions separated by interphase boundaries at which phase transitions of various nature occur [1–5].

Equations of multiphase nonisothermal filtration that are supplemented with conditions at the un-
known moving boundary underlie the mathematical description of such processes. The formulated problems
are rather complex; the existence and uniqueness theorems are not proved in them, and the employment of
numerical methods is currently retarded by the absence of a clear understanding of the qualitative charac-
teristics of the thermodynamic behavior of the hydrate-containing system. In this connection, exact solutions
are of primary importance in the present stage of investigation of the process of dissociation of hydrates in
strata; these solutions make it possible to analyze in detail the basic properties of the physical system and to
determine possible structures of mathematical solution of the problem. However, even in the simplest cases
one is unable to find a purely analytical solution of the problem since the analytical solutions obtained in
each existence domain of the phases lead to a system of transcendental equations at a moving boundary that
can be investigated just by numerical methods.

In the present work, we formulate a mathematical model of dissociation of gas nitrates coexisting
with a gas in permeable strata which takes into account the mobility of the liquid phase. The one-dimensional
problem is investigated in a self-similar formulation. The calculations performed in a wide parameter range
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indicate the existence of four different regimes of dissociation. A critical diagram is constructed on the plane
of the main parameters and the existence domain of the solution of each form for each kind of regime are
singled out.

1. We will assume that the hydrate-containing stratum is a porous medium saturated with a gas hy-
drate and a gas. Let us assume that the operation of a gas well reduces the pressure in the stratum, leading
to the dissociation of the hydrate and the formation of a region saturated with water and gas. The assumption
is made that in the heterogeneous mixture gas–water the latter acts as an incompressible fluid. The system of
basic equations represents the laws of conservation of mass and energy, Darcy’s law, the equation of state for
a gas, and thermodynamic relations; the system has the following form:

• in the region gas–hydrate

m 
∂
∂t

 (1 − ν) ρg + div ρg vg = 0 ,   vg = − 
k
µg

 fg (ν) grad P , P = ρgRT ,

(ρC)1 
∂T

∂t
 + div (vg P) + CV ρg vg grad T = div (λ1 grad T) , (1)

λ1 = mνλh + m (1 − ν) λg + (1 − m) λs , (ρC)1 = mνρhCh + m (1 − ν) ρgCg + (1 − m) ρsCs ;

• in the region gas–water

m 
∂
∂t

 (1 − S) ρg + div ρg vg = 0 , m 
∂
∂t

 S + div vw = 0 , vj = − 
k
µj

 fj (S) grad P ,   j = w, g ,

(ρC)2 
∂T

∂t
 + div [P (vg + vw)] + (ρwCw vw + ρgCg vg) grad T = div (λ2 grad T) , (2)

Conditions on the front of decomposition of the hydrate are formulated as the conditions of a thermo-
dynamically equilibrium jump of the functions of hydrate and water saturation. The conditions of thermody-
namic equilibrium on the dissociation surface of the hydrate have the form

P = ρgRT ,   λ2 = mSλw + m (1 − S) λg + (1 − m) λs , (ρC)2 = mSρwCw + m (1 − S) ρgCg + (1 − m) ρsCs .

T+ = T− = T∗  ,   P+ = P− = P∗  ,   ln P∗  = A − 
B
T∗

 ,   A = 49.32 ,   B = 9459 . (3)

The last relation that represents an analytical relationship between the pressure and the dissociation
temperature of the gas hydrate is obtained as a result of interpolation of experimental data [6].

The second group of boundary conditions on the dissociation surface represents the laws of conserva-
tion of the masses of the gas and the water and also the law of conservation of energy

m 



ν+ 

ρ0g

ρg
 + S− − ν+




 Vn = 

kfg (ν+)
µg

 (grad P)n+ − 
kfg(S−)

µg
 (grad P)n− ,

(4)

m 



ν+ 

ρ0w

ρw
 − S−




 Vn = 

kfw (S−)
µw

 (grad P)n− , mν+qρhVn = (λ grad T)n+ − (λ grad T)n− .
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The system of the laws of conservation (4) at the unknown moving boundary together with the con-
ditions of thermodynamic equilibrium (3) comprises the complete system of boundary conditions on the dis-
sociation surface.

2. We consider the problem of decomposition of a hydrate in a semiinfinite stratum. Let the half-
space x > 0, at the initial instant of time, be occupied by a stratum filled with a heterogeneous mixture of a
hydrate and a gas with the temperature T0, pressure P0, and value of the hydrate saturation ν = ν0. We as-
sume that on a stationary wall x = 0 that corresponds to the producing well (or system of wells) the pressure
decreased to a certain rather small value P0 that corresponds to the thermodynamic conditions of existence of
the gas in a free state. Then the hydrate-dissociation front x = X(t) that separates the regions saturated with
the mixtures gas–hydrate and gas–water, respectively, propagates to the right of the surface x = 0.

We consider dissociation regimes that correspond to the technology of decomposition of the hydrate
by the method of reducing the stratum pressure. In this case, the change in the stratum temperature is attrib-
uted to the absorption of heat as a consequence of the decomposition of the hydrate. We establish the upper
limit of variation of the temperature for a unit volume of the hydrate-containing stratum. Disregarding the
external inflow of heat to this volume gives the maximum value for the decrease in the stratum temperature.
The law of conservation of energy yields the relation between variations of temperature and those of hydrate
saturation: 

(1 − m) ρsCsδT � mρhqδν .

By substituting the characteristic value of the parameters we obtain

0.8 ⋅ 2 ⋅ 103 ⋅ 103δT C 0.2 ⋅ 0.9 ⋅ 103 ⋅ 5 ⋅ 105 ⋅ 0.5 .

It follows that the characteristic value for the maximum change in the temperature in the case of dissociation
of a gas hydrate in the stratum is δT ≤ 30 K.

It should be noted that the actual change in the temperature is smaller because of the presence of the
influx of heat to the singled-out volume. The above upper limits make it possible to infer that under the
depression action on a hydrate-containing stratum the variation of temperature is much smaller than the abso-
lute value; therefore, the procedure of linearization relative to the temperature function is always true.

We consider the ratio of convective transfer to conductive transfer in the energy equation that is de-

termined by the dimensionless parameter 
ρw Cw

µw λ1
 kδP. The characteristic values of the pressure and the perme-

ability coefficient can be changed considerably, whereas the changes in the remaining parameters are small;
therefore, the condition of smallness of the convective transfer of heat can be written in the form 

ρwCw

µwλ1

 kδP C 
103⋅4.4⋅103

2⋅10−3⋅1.8
 kδP C 109 kδP << 1 .

Finally, we obtain the condition of smallness of the convection transfer of energy in the region gas–water in
the form kδP << 10−9 N. 

Analogous considerations performed for the region gas–hydrate lead to the relation 

ρgCP

µgλ2

 kδP C 
2.6⋅2⋅103

10−5⋅1.8
 kδP C 2.9⋅108 kδP << 1 .
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The condition obtained in the region gas–hydrate is weaker; therefore, it will suffice to set a limit to
the smallness of the convective flow in the region gas–water; then the analog condition in the region gas–hy-
drate will be fulfilled automatically. Assuming that the pressure changes are small as compared to the abso-
lute values and the temperature changes, as has been shown above, are in the order of tens of degrees, upon
disregarding the small terms in systems (1) and (2) we obtain a system of linear equations for disturbances
in the regions gas–water and hydrate–gas respectively: 

∂S′

∂t
 = κw∆P′ ,   

∂P′

∂t
 = κj∆P′ ,   

∂T

∂t
 = aj∆P ,   j = 1, 2 ;

κw = 
kf (S0)

mµw

 ,   κ1 = 
kP0

mµg

 ,   κ2 = 




S0

µw

 + 
1 − S0

µg




 

kP0

m (1 − S0)
 ,

a1 = 
mν0λh + m (1 − ν0) λg + (1 − m) λs

mν0 ρhCh + m (1 − ν0) ρgCg + (1 − m) ρsCs
 ,

a2 = 
mS0λw + m (1 − S0) λg + (1 − m) λs

mS0 ρwCw + m (1 − S0) ρgCg + (1 − m) ρsCs

 

(S0 is the undisturbed water saturation in the region gas–water which depends on the initial hydrate saturation
and is calculated from the formula S0 = ν0ρh

 ⁄ ρw).
The initial and boundary conditions have the form 

t = 0 :   X (0) = 0 ,   x > 0 :   T = T0 ,   P = P0 ;   x = 0 :   P = P0 (P0 < P0) ,   T = T0 .

We consider the case where the hydrate saturation of the stratum and the initial and boundary values
of the temperature and the pressure are constant. Then the problem has a self-similar solution of the form 

X (t) < x < ∞ :   T (ζ) = (T∗  − T0) 
erfc (ζ)
erfc (γ)

 + T0 ,   P (ζ) = (P∗  − P0) 
erfc (ζ)
erfc (γ)

 + P0 ;

0 < x < X (t) :   T (ζ) = (T∗  − T0) 
erf (ζ)
erf (γ)

 + T0 ,   P (ζ) = (P∗  − P0) 
erf (ζ)
erf (γ)

 + P0 .

By substituting the expressions for the pressure and the temperature into the conditions at the moving
boundary (3)–(4) we obtain the system of transcendental equation for γ, Θ∗ , Π∗ , and S−

√πa1

κ1

 



ν0 





ρ0g

ρg

 − 1



 + S−




 γ + (1 − ν0) [Π∗  − 1] 

exp (– γ2a1
 ⁄ κ1)

erfc (γ √a1
 ⁄ κ1)

 −

− (1 − S−) √ κ1

κ2

 



Π∗  − 

P0

P0




 
exp (−γ2a1

 ⁄ κ2)

erf (γ √a1
 ⁄ κ2 )

 = 0 ,

(5)

√π 



ν0 

ρ0w

ρw

 − S−



 γ − 

κw

√a1κ2

 S− 



Π∗  − 

P0

P0




 
exp (−γ2a1

 ⁄ κ2)

erf (γ √a1
 ⁄ κ2 )

 = 0 ,
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√πa1κ1  mν0qρh

λ1T0

 γ + (Θ∗  − 1) 
exp (− γ2κ1

 ⁄ a1)

erfc (γ √κ1
 ⁄ a1 )

 + 
λ2

λ1

 √ a1

a2

 



Θ∗  − 

T0

T0




 
exp (− γ2κ1

 ⁄ a2)

erf (γ √κ1
 ⁄ a2)

 = 0 ,

ln (Π∗ P0) = A − 
B

T0Θ∗
 .

The condition of thermodynamic consistency of the solution implies that the temperature of the water
in the region behind the hydrate-dissociation front must be higher than the crystallization temperature of the
water; otherwise, for the found negative temperature the mathematical model must take into account the for-
mation of ice in dissociation. Another thermodynamic condition that reflects the condition of existence of a
hydrate in the region ahead of the decomposition front assumes that the local temperature of the hydrate must
be lower than the local dissociation temperature which is calculated from the pressure distribution found in
the process of solution. If this condition is violated, then in order to eliminate thermodynamic inconsistency
we must introduce an extended region of dissociation of the hydrate.

3. The system of transcendental equations (5) was solved numerically. From the presented initial and
bounding values of the pressure, temperature, and hydrate-saturation functions we determined the velocity of
the moving boundary of dissociation and the values of the temperature and pressure on the front. The calcu-
lations were performed for the regimes of decomposition of the hydrate that are attributed to the pressure
decrease in the stratum without taking into account the temperature action on the stratum. The influx of heat
required for dissociation was carried out from both the region ahead of the front and the region behind the
front. Taking account of the latter represents taking account of the influx of heat from the surrounding rocks.
In the absence of thermal action on the stratum the pressure distribution is monotonic in character. The nu-
merical experiments performed in a wide parameter range revealed four fundamentally different regimes of
decomposition of gas hydrates in the stratum that originally coexist with a gas. Figure 1a gives examples of
calculations indicating the existence of a consistent solution for the following values of the parameters [7]
and the initial and boundary conditions: 

Fig. 1. Distribution of the stratum temperature (1) and the dissociation
temperature of the hydrate (2): a) consistent case corresponding to the
decomposition of the hydrate into the gas and the water (P0 = 2.5⋅106

Pa, k = 10−17 m2); b) superheating of the hydrate corresponding to the
formation of an extended dissociation region (P0 = 2.5⋅106 Pa, k =
5⋅10−17 m2); c) subcooling of the water behind the dissociation front cor-
responding to the formation of an ice "lock" behind the front (P0 =
1.3⋅106 Pa, k = 10−17 m2); d) superheating of the hydrate in the region
ahead of the front and subcooling of the water behind the dissociation
front corresponding to the formation of an extended region of dissocia-
tion of the hydrate and the appearance of ice (P0 = 1.5⋅106 Pa, k =
2⋅10−17 m2). T, K.
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T0 = T0 = 275 K ,   P0 = 6⋅106 Pa ,   P0 = 2.5⋅106 Pa ,   k = 10−17 m2 ,   m = 0.2 ,   λs = 2 W ⁄ (m⋅K) ,

λw = 0.684 W ⁄ (m⋅K) ,   λh = 2.11 W ⁄ (m⋅K) ,   Cs = 103 J ⁄ (kg⋅K) ,   Ch = 2.5⋅103 J ⁄ (kg⋅K) ,

Cw = 4.39⋅103 J ⁄ (kg⋅K) ,   ρs = 2⋅103 kg ⁄ m
3 ,   ρw = 103 kg ⁄ m

3 ,   ρh = 103 kg ⁄ m
3 ,

q = 2.19⋅106 J ⁄ kg ,   µg = 10−5 Pa⋅sec ,   R = 520 J ⁄ (kg⋅K) ,   µw = 2⋅10−3 Pa⋅sec .

In this case, the temperature of the hydrate ahead of the phase-transition front is lower than the dis-
sociation temperature calculated from the pressure distribution while the temperature on the decomposition
front is higher than the crystallization temperature of water.

The improvement in the permeability of the stratum qualitatively alters the solution. Figure 1b pre-
sents calculation results for k = 5⋅10−17 m2 when the decomposition temperature of the hydrate in the region
ahead of the dissociation front decreased below the temperature of the stratum, which indicates the superheat-
ing of the hydrate in this region. In this case, an extended region of decomposition of the hydrate analogous
to that introduced in [1] occurs.

The pressure decrease at the boundary (P0 = 1.3⋅106 Pa) for the permeability k = 10−17 m2 leads to
the intensification of the process of dissociation, and in this case the influx of heat to the front will not
suffice for the dissociation temperature to be held in the region of positive temperatures (Fig. 1c). The disso-
ciation temperature of the front calculated in the process of solution turns out to be lower than the water-
crystallization temperature. Here the mathematical model also contains thermodynamic inconsistency, and it is
natural to assume that in this case the process of decomposition of the hydrate occurs with the formation of
ice [3–5].

If the pressure gradient and the permeability are rather high (P0 = 1.5⋅106 Pa, k = 2⋅10−17 m2), one
can carry out a dissociation regime where the superheating of the hydrate in the region ahead of the front is
realized and simultaneously the temperature on the front lies below the crystallization temperature of the
water (Fig. 1d). In this case, the physical process occurs with the formation of an extended region of disso-
ciation and an ice-containing region, and for an adequate mathematical description we must introduce five
regions of dissimilar thermodynamic states of a heterogeneous mixture (gas–hydrate, gas–water–hydrate, gas–
ice–hydrate, gas–ice, and gas–water) divided by four boundaries of phase transitions.

Fig. 2. Critical curves dividing the plane of parameters (k, P0) into four
existence domains of different dissociation regimes: 1) decomposition
into the gas and the water; 2) decomposition with the formation of ice;
3) formation of ice and of an extended dissociation region; 4) formation
of an extended dissociation region.
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It is of interest to consider the regions of the parameters for which one regime or another is realized.
Figure 2 presents two neutral curves on the plane (k, P0) that divide the plane into four regions in which the
corresponding form of the solution is realized. In region 1, we have a consistent front solution. Region 2
corresponds to the existence of the solution with the formation of an ice-saturated zone, while region 3 cor-
responds to both the formation of an extended dissociation zone and the occurrence of ice. In the range of
parameters corresponding to region 4, the hydrate dissociates in the extended zone at positive temperatures.

The change in the remaining parameters of the physical system leads to a change in the range of the
parameters of realization of one or another regime and accordingly to the deformations of the critical curves.
Thus, for example, as the stratum temperature increases, the existence domain of solutions with the formation
of ice decreases, while as the initial pressure increases, the front regime becomes stabilized and its existence
domain is extended. It is obvious from the critical diagram (Fig. 2) that ice can be formed in strata of rather
high initial temperature if the permeability of the stratum and the pressure gradient are rather high, and this
process is realized simultaneously with the formation of an extended dissociation region. The indicated pa-
rameter range corresponds to rather high permeabilities and pressure gradients and is beyond the framework
of the approximation used in the present work.

This work was carried out with support from the Russian Foundation for Basic Research (project 99-
01-00272).

NOTATION

ν, hydrate saturation; T, temperature; Tc, crystallization temperature of water; P, pressure; S, water
saturation; v, filtration rate; f, relative permeability; m, porosity; k, permeability; C, heat capacity; R, gas con-
stant; µ, viscosity; ρ, density; a, thermal diffusivity; λ, thermal conductivity; V, rate of jump; q, specific heat
of dissociation; ζ = x ⁄ 2√a1t , dimensionless coordinate; X(t) = 2γ√a1t , law of displacement of the moving
phase boundary; γ, dimensionless coefficient in the law of motion of the front; Θ∗  = T∗

 ⁄ T0, dimensionless
temperature; Π∗  = P∗

 ⁄ P0, dimensionless pressure. Subscripts: w, q, and s, water, gas, and skeleton of the
porous medium respectively; h, hydrate; n, normal; + and −, quantities to the right and left of the front re-
spectively; ∗ , values of the quantities on the front; subscript 0, initial values; superscript 0, values at the sta-
tionary boundary; 1, ahead of the front; 2, behind the front.
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